Чистая текущая стоимость (NPV). Будущая стоимость денег Методы определения текущей приведенной и будущей стоимости

Как мы уже выяснили, сегодняшние денежные средства дороже, чем будущие. Если нам предлагают приобрести бескупонную облигацию, а через год обещают эту ценную бумагу погасить и выплатить 1000 руб., то необходимо вычислить цену данной облигации, по которой мы согласились бы ее купить. По сути дела, для нас задача сводится к определению текущей стоимости 1000 руб., которые мы получим через год.

Текущая стоимость - оборотная сторона будущей стоимости.

Текущая стоимость - это дисконтированная стоимость будущего денежного потока. Ее можно вывести из формулы определения будущей стоимости:

где РУ - текущая стоимость; V - будущие платежи; г - ставка дисконтирования; коэффициент дисконтирования; п - число лет.

В приведенном выше примере можем исчислить цену облигации, пользуясь данной формулой. Для этого необходимо знать ставку дисконтирования. В качестве ставки дисконтирования берут доходность, которую можно получить на финансовом рынке, вкладывая деньги в какой-либо финансовый инструмент с аналогичным уровнем риска (банковский депозит, вексель и т.п.). Если у нас есть возможность разместить денежные средства в банке, который выплачивает за год 15%, то цена предлагаемой нам облигации

Таким образом, приобретя данную облигацию за 869 руб. и получив через год при ее погашении 1000 руб., мы заработаем 15%.

Рассмотрим пример, кода инвестору требуется рассчитать первоначальную сумму вклада. Если через четыре года инвестор хочет получить в банке сумму 15 000 руб. при рыночных процентных ставках 12% годовых, то какую сумму ему следует разместить на банковском депозите? Итак,

Для вычисления приведенной стоимости целесообразно пользоваться таблицами дисконтирования, показывающими текущую стоимость денежной единицы, которую предполагается получить через несколько лет. Таблица коэффициентов дисконтирования, показывающих приведенную стоимость денежной единицы, представлена в приложении 2. Фрагмент этой таблицы приведен ниже (табл. 4.4).

Таблица 4.4. Приведенная стоимость денежной единицы, которая будет получена через и лет

Годовая процентная ставка

Например, требуется определить приведенную стоимость 500 долл. США, которые предполагается получить через семь лет при ставке дисконтирования 6%. В табл. 4.4 на пересечении строки (7 лет) и столбца (6%) находим коэффициент дисконтирования 0,665. В этом случае приведенная стоимость 500 долл. равна 500 0,6651 = 332,5 долл.

Если проценты выплачивать чаще чем один раз в год, то формула расчета текущей стоимости модифицируется аналогично тому, как мы поступали с расчетами будущей стоимости. При многократном начислении процентов в течение года формула определения текущей стоимости имеет вид

В рассмотренном примере с четырехлетним депозитом предположим, что проценты по вкладу начисляются ежеквартально. В этом случае, чтобы получить через четыре года 15 000 долл., инвестор должен разместить па депозите сумму

Таким образом, чем чаще идет начисление процентов, тем меньше текущая стоимость при заданном конечном результате, т.е. взаимосвязь между частотой начисления процентов и текущей стоимостью обратна по сравнению с той, которая складывается для будущей стоимости.

В практической деятельности финансовые менеджеры постоянно сталкиваются с проблемой выбора вариантов, когда необходимо сравнивать разновременные денежные потоки.

Например, существуют два варианта финансирования строительства нового объекта. Общий срок строительства составляет четыре года, сметная стоимость строительства - 10 млн руб. В конкурсе на получение подряда участвуют две организации, предлагающие следующие условия оплаты работ по годам (табл. 4.5).

Таблица 4.5. Сметная стоимость строительства, млн руб.

Организация А

Организация В

Сметная стоимость строительства одинакова. Однако затраты по времени их осуществления распределены неравномерно. Организация А основную сумму затрат (40%) осуществляет в конце строительства, а организация В - в начальный период. Безусловно, для заказчика более выгодно затраты на оплату отнести на конец периода, так как с течением времени денежные средства обесцениваются.

Для того чтобы сравнить разновременные денежные потоки, необходимо найти их приведенную к текущему моменту времени стоимость и просуммировать полученные значения.

Приведенная стоимость потока платежей (РУ) рассчитывается по формуле

где - денежный поток в году; t - порядковый номер года; г - ставка дисконтирования.

Если в рассматриваемом примере г = 15%, то результаты расчетов приведенных стоимостей по двум вариантам выглядят следующим образом (табл. 4.6).

Таблица 4.6.

По критерию приведенной стоимости вариант финансирования, предложенный организацией А, оказался дешевле, чем предложение организации В. Заказчик в этих условиях безусловно предпочтет отдать подряд организации А (при прочих равных условиях).


где PV – текущая стоимость денег,

FV – будущая стоимость денег,

n – количество временных интервалов,

i – ставка дисконтирования.

Пример. Какую сумму необходимо положить на счет, чтобы через пять лет получить 1000 руб. (i=10%)

PV = 1000 / (1+0.1)^5 = 620.92 руб.

Таким образом, для расчета текущей стоимости денег мы должны известную их будущую стоимость поделить на величину (1+i) n . Текущая стоимость находится в обратной зависимости от величины ставки дисконтирования. Например, текущая стоимость денежной единицы, получаемой через 1 год при ставке 8% составляет

PV = 1/(1+0,08) 1 = 0,93,

А при ставке 10%

PV = 1/(1+0,1) 1 = 0,91.

Текущая стоимость денег находится также в обратной зависимости от числа временных периодов до их получения.

Рассмотренная процедура дисконтирования денежных потоков может быть использована при принятии решений об инвестировании. Наиболее общее правило принятия решений – правило определения чистой приведенной стоимости (NPV). Суть его состоит в том, что участие в инвестиционном проекте целесообразно в том случае, если приведенная стоимость будущих денежных поступлений от его реализации превышает первоначальные инвестиции.

Пример. Имеется возможность купить сберегательную облигацию номиналом 1000 руб. и сроком погашения 5 лет за 750 руб. Другим альтернативным вариантом инвестирования является размещение денег на банковском счету с процентной ставкой 8% годовых. Необходимо оценить целесообразность инвестирования средств в приобретение облигации.

Для расчета NPV в качестве процентной ставки или в более широком смысле ставки доходности, необходимо использовать альтернативную стоимость капитала. Альтернативная стоимость капитала – это та ставка доходности, которую можно получить от других направлений инвестирования. В нашем примере альтернативным видом инвестирования является помещение денег на депозит с доходностью 8%.

Сберегательная облигация обеспечивает денежные поступления в размере 1000 руб. через 5 лет. Текущая стоимость этих денег равна

PV = 1000/1.08^5 = 680.58 руб.

Таким образом, текущая стоимость облигации составляет 680.58 руб., в то время как купить ее предлагают за 750 руб. Чистая текущая стоимость инвестиций составит 680.58-750=-69.42, и инвестировать средства в приобретение облигации нецелесообразна.



Экономический смысл показателя NPV состоит в том, что он определяет изменение финансового состояния инвестора в результате реализации проекта. В данном примере в случае приобретения облигации богатство инвестора уменьшится на 69.42 руб.

Показатель NPV может быть также использован для оценки различных вариантов заимствования денежных средств. Например, вам нужно взять в долг 5000 дол. для приобретения автомобиля. В банке вам предлагают заем под 12 % годовых. Ваш друг может одолжить 5000 дол., если вы отдадите ему 9000 дол. через 4 года. Необходимо определить оптимальный вариант заимствования. Рассчитаем текущую стоимость 9000 дол.

PV = 9000/(1+0.12)^4 = 5719.66 дол.

Таким образом, NPV данного проекта составляет 5000-5719.66= -719.66 дол. В данном случае лучшим вариантом заимствования является банковский кредит.

Для расчета эффективности инвестиционных проектов можно использовать также показатель внутренней нормы доходности (internal rate of return) IRR. Внутренняя ставка доходности – это такое значение дисконтной ставки, которое уравнивает приведенную стоимость будущих поступлений и приведенную стоимость затрат. Другими словами, IRR равна процентной ставки, при которой NPV = 0.

В рассмотренном примере приобретения облигации IRR вычисляется из следующего уравнения

750 = 1000/(1+IRR)^5

IRR = 5.92%. Таким образом, доходность облигации при ее погашении составляет 5.92% в год, что существенно меньше доходности банковского депозита.

Оценка справедливой стоимости акций или их внутренней стоимости — непростая задача, однако любому инвестору полезно уметь это делать, чтобы определить целесообразность инвестиций. Финансовые мультипликаторы, такие как Debt/Equity, P/E и прочие дают возможность оценить общую стоимость акций по сравнению с другими компаниями на рынке.

Но что делать, если нужно определить абсолютную стоимость компании? Для решения этой задачи вам поможет финансовое моделирование, и, в частности, популярная модель дисконтированных денежных потоков (Discounted Cash Flow, DCF).

Предупреждаем: эта статья может потребовать достаточно много времени для прочтения и осмысления. Если у вас сейчас есть всего лишь 2-3 минуты свободного времени, то этого будет недостаточно. В таком случае просто перенесите ссылку в избранное и прочитайте материал позже.

Свободный денежный поток (FCF) используется для расчета экономической эффективности вложения, поэтому в процессе принятия решения инвесторы и кредиторы уделяют основное внимание именно этому показателю. Размер свободного денежного потока определяет, какого размера дивидендные выплаты получат держатели ценных бумаг, сможет ли компания своевременно исполнять долговые обязательства, направлять деньги на выкуп акций.

У компании может быть положительная чистая прибыль, но отрицательный денежный поток, что подрывает эффективность бизнеса, то есть, по сути, компания не приносит денег. Таким образом, показатель FCF зачастую является более полезным и информативным, чем чистая прибыль компании.

Модель DCF как раз помогает оценить текущую стоимость проекта, компании или актива исходя из принципа, что эта стоимость основана на способности генерировать денежные потоки. Для этого cash flow дисконтируют, то есть размер будущих денежных потоков приводят к их справедливой величине в настоящем с использованием ставки дисконтирования, которая является ничем иным как требуемой доходностью или ценой капитала.

Стоит отметить, что оценка может быть произведена как с точки зрения стоимости всей фирмы, с учетом как собственного, так и заемного капитала, и с учетом стоимости только собственного капитала. В первом случае используется денежный поток фирмы (FCFF), а во втором — денежный поток на собственный капитал (FCFE). В финансовом моделировании, в частности в DCF модели, чаще всего используется FCFF, а именно UFCF (Unlevered Free Cash Flow) или свободный денежный поток компании до вычета финансовых обязательств.

В связи с этим, в качестве ставки дисконтирования мы возьмем показатель WACC (Weighted Average Cost of Capital) — средневзвешенная стоимость капитала. WACC компании учитывает и стоимость акционерного капитала фирмы, и стоимость её долговых обязательств. То, как оценить эти два показателя, а также их долю в структуре капитала компании, мы разберем в практической части.

Стоит также учитывать то, что ставка дисконтирования может меняться во времени. Однако для целей нашего анализа мы возьмем постоянный WACC.

Для расчета справедливой стоимости акций мы будем применять двухпериодную модель DCF, которая включает в себя промежуточные денежные потоки в прогнозном периоде и денежные потоки в постпрогнозный период, в котором предполагается, что компания вышла на постоянные темпы роста. Во втором случае рассчитывается терминальная стоимость компании (Terminal Value, TV). Этот показатель очень важен, так как он представляет собой существенную долю общей стоимости оцениваемой компании, в чем мы потом убедимся.

Итак, мы разобрали основные понятия, связанные с моделью DCF. Перейдем к практической части.

Для получения оценки DCF требуются следующие шаги:

1. Расчет текущей стоимости предприятия.

2. Расчет ставки дисконтирования.

3. Прогнозирование FCF (UFCF) и дисконтирование.

4. Вычисление терминальной стоимости (TV).

5. Расчет справедливой стоимости предприятия (EV).

6. Расчет справедливой стоимости акции.

7. Построение таблицы чувствительности и проверка результатов.

Для анализа мы возьмем российскую публичную компанию Северсталь, финансовая отчетность которой представлена в долларах по стандарту МСФО.

Для расчета свободного денежного потока понадобится три отчета: отчет о прибылях и убытках, баланс и отчет о движении денежных средств. Для анализа будем использовать пятилетний временной горизонт.

Расчет текущей стоимости предприятия

Стоимость предприятия (Enterprise Value, EV) — это, по сути, сумма рыночной стоимости капитала (рыночная капитализация), неконтролирующей доли (Minority interest, Non-controlling Interest) и рыночной стоимости долга компании, за вычетом любых денежных средств и их эквивалентов.

Рыночная капитализация компании рассчитывается путем умножения цены акций (Price) на количество акций, находящихся в обращении (Shares outstanding). Чистый долг (Net Debt) — это общий долг (именно финансовый долг: долгосрочная задолженность, долг, подлежащий выплате в течение года, финансовый лизинг) за вычетом денежных средств и эквивалентов.

В итоге мы получили следующее:

Для удобства представления будем выделять харды, то есть вводимые нами данные, синим, а формулы — черным. Данные по неконтролирующим долям, долгу и денежным средствам ищем в балансе.

Расчет ставки дисконтирования

Следующим этапом мы рассчитаем ставку дисконтирования WACC.

Рассмотрим формирование элементов для WACC.

Доля собственного и заемного капитала

Расчет доли собственного капитала довольно прост. Формула выглядит следующим образом: Market Cap/(Market Cap+Total Debt). По нашим расчетам, получилось, что доля акционерного капитала составила 85,7%. Таким образом, доля заемного составляет 100%-85,7%=14,3%.

Стоимость акционерного капитала

Для расчета требуемой доходности инвестирования в акционерный капитал будет использоваться модели ценообразования финансовых активов (Capital Asset Pricing Model — CAPM).

Cost of Equity (CAPM): Rf+ Beta* (Rm — Rf) + Country premium = Rf+ Beta*ERP + Country premium

Начнем с безрисковой ставки. В качестве нее была взята ставка по 5-летним гособлигациям США.

Премию за риск инвестирования в акционерный капитал (Equity risk premium, ERP) можно рассчитать самому, если есть ожидания по доходности российского рынка. Но мы возьмем данные по ERP Duff&Phelps, ведущей независимой фирмы в сфере финансового консалтинга и инвестиционно-банковской деятельности, оценками которой пользуются многие аналитики. По сути, ERP это премия за риск, которую получает инвестор, вкладывающий средства в акции, а не безрисковый актив. ERP составляет 5%.

В качестве бета-коэффициента использовались значения отраслевых бета-коэффициентов по развивающимся рынкам капитала Асвата Дамодарана, известного профессора финансового дела в Stern School Business при Нью-Йоркском университете. Таким образом, безрычаговая бета равна 0,90.

Для учета специфики анализируемой компании стоит произвести корректировку отраслевого бета-коэффициента на значение финансового рычага. Для этого мы используем формулу Хамады:

Таким образом, получаем, что рычаговая бета равна 1,02.

Рассчитываем стоимость акционерного капитала: Cost of Equity=2,7%+1,02*5%+2,88%=10,8%.

Стоимость заемного капитала

Есть несколько способов расчета стоимости заемного капитала. Самый верный способ заключается в том, чтобы взять каждый кредит, который есть у компании (в том числе выпущенные бонды), и просуммировать доходности к погашению каждого бонда и проценты по кредиту, взвешивая доли в общем долге.

Мы же в нашем примере не будем углубляться в структуру долга Северстали, а пойдем по простому пути: возьмем размер процентных платежей и поделим на общий долг компании. Получаем, что стоимость заемного капитала составляет Interest Expenses/Total Debt=151/2093=7,2%

Тогда средневзвешенная стоимость капитала, то есть WACC, равна 10,1%, при том, что налоговую ставку мы возьмем равной налоговому платежу за 2017 год, поделенному на доналоговую прибыль (EBT) — 23,2%.

Прогнозирование денежных потоков

Формула свободных денежных потоков выглядит следующим образом:

UFCF = EBIT (Прибыль до уплаты процентов и налогов) -Taxes (Налоги) + Depreciation & Amortization (Амортизация) — Capital Expenditures (Капитальные расходы) +/- Change in non-cash working capital (Изменение оборотного капитала)

Будем действовать поэтапно. Сначала нам нужно спрогнозировать выручку, для чего есть несколько подходов, которые в широком смысле подразделяются на две основные категории: основанные на темпах роста и на драйверах.

Прогноз на основе темпов роста проще и имеет смысл для стабильного и более зрелого бизнеса. Он построен на предположении об устойчивом развитии компании в будущем. Для многих DCF моделей этого будет достаточно.

Второй способ подразумевает прогнозирование всех финансовых показателей, необходимых для расчета свободного денежного потока, таких как цена, объем, доля на рынке, количество клиентов, внешние факторы и прочие. Этот способ является более подробным и сложным, однако и более правильным. Частью такого прогноза часто становится регрессионный анализ для определения взаимосвязи между базовыми драйверами и ростом выручки.

Северсталь — это зрелый бизнес, поэтому для целей нашего анализа мы упрости задачу и выберем первый метод. К тому же второй подход является индивидуальным. Для каждой компании нужно выбирать свои ключевые факторы влияния на финансовые результаты, так что формализовать его под один стандарт не получится.

Рассчитаем темпы роста выручки с 2010 года, маржу валовой прибыли и EBITDA. Далее берем среднее по этим значениям.

Прогнозируем выручку исходя из того, что она будет меняться со средним темпом (1,4%). К слову, согласно прогнозу Reuters, в 2018 и 2019 годах выручка компании будет снижаться на 1% и 2% соответственно, и лишь потом ожидаются положительные темпы роста. Таким образом, в нашей модели немного более оптимистичные прогнозы.

Показатели EBITDA и валовая прибыль мы будем рассчитывать, опираясь на среднюю маржу. Получаем следующее:

В расчете FCF нам требуется показатель EBIT, который рассчитывается, как:

EBIT = EBITDA — Depreciation&Amortization

Прогноз по EBITDA у нас уже есть, осталось спрогнозировать амортизацию. Средний показатель амортизация/выручка за последние 7 лет составил 5,7%, исходя из этого находим ожидаемую амортизацию. В конце рассчитываем EBIT.

Налоги считаем исходя из доналоговой прибыли: Taxes = Tax Rate*EBT = Tax Rate*(EBIT — Interest Expense) . Процентные расходы в прогнозный период мы возьмем постоянными, на уровне 2017 года ($151 млн) — это упрощение, к которому не всегда стоит прибегать, так как долговой профиль эмитентов бывает разным.

Налоговую ставку мы уже ранее указывали. Посчитаем налоги:

Капитальные расходы или CapEx находим в отчете о движении денежных средств. Прогнозируем, исходя из средней доли в выручке.

Между тем, Северсталь уже подтвердила план капзатрат на 2018-2019 годы на уровне более $800 млн и $700 млн соответственно, что выше объема инвестиций в последние годы ввиду строительства доменной печи и коксовой батареи. В 2018 и 2019 годах мы возьмем CapEx равным этим значениям. Таким образом, показатель FCF может быть под давлением. Менеджмент же рассматривает возможность выплат более 100% от свободного денежного потока, что сгладит негатив от роста капзатрат для акционеров.

Изменение оборотного капитала (Net working capital, NWC) рассчитывается по следующей формуле:

Change NWC = Change (Inventory + Accounts Receivable + Prepaid Expenses + Other Current Assets — Accounts Payable — Accrued Expenses — Other Current Liabilities)

Другими словами, увеличение запасов и дебиторской задолженности уменьшает денежный поток, а увеличение кредиторской задолженности, наоборот, увеличивает.

Нужно сделать исторический анализ активов и обязательств. Когда считаем значения по оборотному капиталу, мы берем либо выручку, либо себестоимость. Поэтому для начала нам потребуется зафиксировать нашу выручку (Revenue) и себестоимость (Cost of Goods Sold, COGS).

Рассчитываем, какой процент от выручки приходится на дебиторскую задолженности (Accounts Receivable), запасы (Inventory), расходы будущих периодов (Prepaid expenses) и прочие текущие активы (Other current assets), так как эти показатели формируют выручку. Например, когда продаем запасы, они уменьшаются и это влияет на выручку.

Теперь переходим к операционным обязательствам: кредиторская задолженность (Accounts Payable), накопленные обязательства (Accrued Expenses) и прочие текущие обязательства (Other current liabilities). При этом кредиторскую задолженность и накопленные обязательства мы привязываем к себестоимости.

Прогнозируем операционные активы и обязательства исходя из средних показателей, которые мы получили.

Далее рассчитываем изменение операционных активов и операционных обязательств в историческом и прогнозном периодах. Исходя из этого по формуле, представленной выше, рассчитываем изменение оборотного капитала.

Рассчитываем UFCF по формуле.

Справедливая стоимость компании

Далее нам нужно определить стоимость компании в прогнозный период, то есть продисконтировать полученные денежные потоки. В Excel есть простая функция для этого: ЧПС. Наша приведенная стоимость составила $4 052,7 млн.

Теперь определим терминальную стоимость компании, то есть ее стоимость в постпрогнозный период. Как мы уже отметили, она является очень важной частью анализа, так как составляет более 50% справедливой стоимости предприятия. Существует два основных способа оценки терминальной стоимости. Либо используется модель Гордона, либо метод мультипликаторов. Мы возьмем второй способ, используя EV/EBITDA (EBITDA за последний год), который для Северстали равен 6,3x.

Мы используем мультипликатор к параметру EBITDA последнего года прогнозного периода и дисконтируем, то есть делим на (1+WACC)^5. Терминальная стоимость компании составила $8 578,5 млн (более 60% справедливой стоимости предприятия).

Итого, так как стоимость предприятия рассчитывается суммированием стоимости в прогнозном периоде и терминальной стоимости, получаем, что наша компания должна стоить $12631 млн ($4 052,7+$8 578,5).

Очистив от чистого долга и неконтролирующих долей, мы получим справедливую стоимость акционерного капитала — $11 566 млн. Разделив на количество акций, получаем справедливую стоимость акции в размере $13,8. То есть, согласно построенной модели, цена бумаг Северстали в моменте завышена на 13%.

Однако мы знаем, что наша стоимость будет меняться в зависимости от ставки дисконтирования и мультипликатора EV/EBITDA. Полезно построить таблицы чувствительности, и посмотреть то, как будет меняться стоимость компании в зависимости от уменьшения или увеличения этих параметров.

Исходя из этих данных мы видим, что при росте мультипликатора и уменьшении стоимости капитала, потенциальная просадка становится меньше. Но все же, согласно нашей модели, акции Северстали не выглядят привлекательными для покупки по текущим уровням. Однако стоит учесть, что мы строили упрощенную модель и не учитывали драйверы роста, например, роста цен на продукцию, дивидендную доходность, существенно превышающую среднерыночный уровень, внешние факторы и прочее. Для представления же общей картины по оценке компании, эта модель хорошо подходит.

Итак, разберем плюсы и минусы модели дисконтированных денежных потоков.

Основными достоинствами модели являются:

Дает подробный анализ компании

Не требует сопоставления с другими компаниями отрасли

Определяет «внутреннюю» сторону бизнеса, которая связана с денежными потоками, важными для инвестора

Гибкая модель, позволяет строить прогнозные сценарии и анализировать чувствительность к изменению параметров

Среди недостатков можно отметить:

Требуется большое количество допущений и прогнозов на оценочных суждениях

Довольно сложная для построения и оценки параметров, например, ставки дисконтирования

Высокий уровень детализации расчетов может привести к чрезмерной уверенности инвестора и потенциальной потери прибыли

Таким образом, модель дисконтированных денежных потоков, хоть довольно сложна и опирается на оценочные суждения и прогнозы, но все же чрезвычайно полезна для инвестора. Она помогает глубже погрузиться в бизнес, понять различные детали и аспекты в деятельности компании, а также может дать представление о внутренней стоимости компании с опорой на то, сколько денежного потока она может сгенерировать в будущем, а значит, принести прибыли инвесторам.

Если возникает вопрос о том, откуда тот или иной инвестдом взял долгосрочный таргет (цель) по цене какой-либо акции, то DCF модель — это как раз один из элементов оценки бизнеса. Аналитики проделывают примерно такую же работу, которая описана в этой статье, но чаще всего с еще более глубоким анализом и выставлением различных весов отдельным ключевым факторам для эмитента в рамках финансового моделирования.

В данном материале мы лишь описали наглядный пример подхода к определению фундаментальной стоимости актива по одной из популярных моделей. В действительности же необходимо учитывать не только оценку компании по DCF, но и ряд других корпоративных событий, оценивая степень их влияния на будущую стоимость ценных бумаг.

В данной статье мы рассмотрим, что такое чистая текущая стоимость (NPV), какой экономический смысл она имеет, как и по какой формуле рассчитать чистую текущую стоимость, рассмотрим некоторые примеры расчёта, в том числе при помощи формул MS Exel.

Что такое чистая текущая стоимость (NPV)?

При вложении денег в любой инвестиционный проект ключевым моментом для инвестора является оценка экономической целесообразности такого инвестирования. Ведь инвестор стремится не только окупить свои вложения, но и ещё что-то заработать сверх суммы первоначальной инвестиции. Кроме того, задачей инвестора является поиск альтернативных вариантов инвестирования, которые бы при сопоставимых уровнях риска и прочих условиях инвестирования принесли бы более высокую прибыль. Одним из методов подобного анализа является расчёт чистой текущей стоимости инвестиционного проекта.

Чистая текущая стоимость (NPV, Net Present Value) – это показатель экономической эффективности инвестиционного проекта, который рассчитывается путём дисконтирования (приведения к текущей стоимости, т.е. на момент инвестирования) ожидаемых денежных потоков (как доходов, так и расходов).

Чистая текущая стоимость отражает прибыль инвестора (добавочную стоимость инвестиций), которую инвестор ожидает получить от реализации проекта, после того, как денежные притоки окупят его первоначальные инвестиционные затраты и периодические денежные оттоки, связанные с осуществлением такого проекта.

В отечественной практике термин «чистая текущая стоимость» имеет ряд тождественных обозначений: чистая приведённая стоимость (ЧПС), чистый приведённый эффект (ЧПЭ), чистый дисконтированный доход (ЧДД), Net Present Value (NPV).

Формула расчёта NPV

Для расчёта NPV необходимо:

  1. Составить прогнозный график по инвестиционному проекту в разрезе периодов. Денежные потоки должны включать как доходы (притоки средств), так и расходы (осуществляемые инвестиции и прочие затраты по реализации проекта).
  2. Определить размер . По сути, ставка дисконтирования отражает предельную норму стоимости капитала инвестора. Например, если для инвестирования будут использованы заёмные средства банка, то ставкой дисконтирования будет являться по кредиту. Если же будут использованы собственные средства инвестора, то за ставку дисконтирования может быть взята ставка процента по банковскому депозиту, ставка доходности по государственным облигациям и т.п.

Расчёт NPV осуществляется по следующей формуле:

где
NPV (Net Present Value) — чистая текущая стоимость инвестиционного проекта;
CF (Cash Flow) — денежный поток;
r — ставка дисконтирования;
n — общее количество периодов (интервалов, шагов) i = 0, 1, 2, …, n за весь срок инвестирования.

В данной формуле CF 0 соответствует объёму первоначальных инвестиций IC (Invested Capital), т.е. CF 0 = IC . При этом денежный поток CF 0 имеет отрицательное значение.

Поэтому, вышеуказанную формулу можно модифицировать:

Если инвестиции в проект осуществляются не одномоментно, а на протяжении ряда периодов, то инвестиционные вложения также должны быть продисконтированны. В таком случае формула NPV проекта примет следующий вид:

Практическое применение NPV (чистой текущей стоимости)

Расчёт NPV позволяет оценить целесообразность инвестирования денежных средств. Возможны три варианта значения NPV:

  1. NPV > 0 . Если чистая текущая стоимость имеет положительное значение, то это свидетельствует о полной окупаемости инвестиций, а значение NPV показывает итоговый размер прибыли инвестора. Инвестиции являются целесообразными в следствие их экономической эффективности.
  2. NPV = 0 . Если чистая текущая стоимость имеет нулевое значение, то это свидетельствует об окупаемости инвестиций, но инвестор при этом не получает прибыль. Например, если были использованы заёмные средства, то денежные потоки от инвестиционных вложений позволят в полном объеме рассчитаться с кредитором, в том числе выплатить причитающиеся ему проценты, но финансовое положение инвестора при этом не изменится. Поэтому следует поискать альтернативные варианты вложения денежных средств, которые бы имели положительный экономический эффект.
  3. NPV < 0 . Если чистая текущая стоимость имеет отрицательное значение, то инвестиция не окупается, а инвестор в таком случае получает убыток. От вложения средств в такой проект следует отказаться.

Таким образом, к инвестированию принимаются все проекты, которые имеют положительное значение NPV. Если же инвестору необходимо сделать выбор в пользу только одного из рассматриваемых проектов, то при прочих равных условиях предпочтение следует отдать тому проекту, который имеет наибольшее значение NPV.

Расчёт NPV при помощи MS Exel

В MS Exel существует функция ЧПС, позволяющая осуществить расчёт чистой приведённой стоимости.

Функция ЧПС возвращает величину чистой приведенной стоимости инвестиции, используя ставку дисконтирования, а также стоимости будущих выплат (отрицательные значения) и поступлений (положительные значения).

Синтаксис функции ЧПС:

ЧПС(ставка;значение1;значение2; ...)

где
Ставка — ставка дисконтирования за один период.
Значение1, значение2,… - от 1 до 29 аргументов, представляющих расходы и доходы
.

Значение1, значение2, … должны быть равномерно распределены во времени, выплаты должны осуществляться в конце каждого периода.

ЧПС использует порядок аргументов значение1, значение2, … для определения порядка поступлений и платежей. Убедитесь в том, что ваши платежи и поступления введены в правильном порядке.

Рассмотрим пример расчёта NPV на базе 4-х альтернативных проектов.

В результате проведённых расчётов проект А следует отклонить, проект Б находится в точке безразличия для инвестора, а вот проекты В и Г следует использовать для вложения средств. При этом, если необходимо выбрать только один проект, то предпочтение следует отдать проекту В , невзирая на то, что сумму недисконтированных денежных потоков за 10 лет он генерирует меньше, чем проект Г .

Преимущества и недостатки NPV

К положительным моментам методики NPV можно отнести:

  • чёткие и простые правила для принятия решений относительно инвестиционной привлекательности проекта;
  • применение ставки дисконтирования для корректировки суммы денежных потоков во времени;
  • возможность учета премии за риск в составе ставки дисконтирования (для более рискованных проектов можно применить повышенную ставку дисконтирования).

К недостаткам NPV можно отнести следующие:

  • трудность оценки для сложных инвестиционных проектов, которые включают в себя множество рисков особенно в долгосрочной перспективе (требуется корректировка ставки дисконтирования);
  • сложность прогнозирования будущих денежных потоков, от точности которых зависит расчетная величина NPV;
  • формула NPV не учитывает реинвестирование денежных потоков (доходов);
  • NPV отражает только абсолютную величину прибыли. Для более корректного анализа необходимо также дополнительно производить расчёт и относительных показателей, например таких как , .

Чистая приведённая стоимость (ЧПС , чистая текущая стоимость , чистый дисконтированный доход , ЧДД , англ. Net present value , принятое в международной практике для анализа инвестиционных проектов сокращение - NPV ) - это сумма дисконтированных значений потока платежей, приведённых к сегодняшнему дню.

Метод чистой приведенной стоимости получил широкое применение при бюджетировании капитальных вложений и принятии инвестиционных решений. Также NPV считается лучшим критерием отбора для принятия или отклонения решения о реализации инвестиционного проекта, поскольку основывается на концепции стоимости денег во времени. Другими словами, чистая приведенная стоимость отражает ожидаемое изменение благосостояния инвестора в результате реализации проекта.

Формула NPV

Чистая приведенная стоимость проекта является суммой настоящей стоимости всех денежных потоков (как входящих, так и исходящих). Формула расчета выглядит следующим образом:

  • CF t – ожидаемый чистый денежный поток (разница между входящим и исходящим денежным потоком) за период t ,
  • r – ставка дисконтирования,
  • N – срок реализации проекта.

Ставка дисконтирования

Важно понимать, что при выборе ставки дисконтирования должна быть учтена не только концепция стоимости денег во времени, но и риск неопределенности ожидаемых денежных потоков! По этой причине в качестве ставки дисконтирования рекомендуется использовать средневзвешенную стоимость капитала (англ. Weighted Average Cost of Capital, WACC ), привлеченного для реализации проекта. Другими словами, WACC является требуемой нормой доходности на капитал, инвестированный в проект. Следовательно, чем выше риск неопределенности денежных потоков, тем выше ставка дисконтирования, и наоборот.

Критерий отбора проектов

Правило принятия решения об отборе проектов при помощи NPV метода довольно прямолинейно. Нулевое пороговое значение говорит о том, что денежные потоки проекта позволяют покрыть стоимость привлеченного капитала. Таким образом, критерии отбора можно сформулировать следующим образом:

  1. Отдельно взятый независимый проект должен быть принят при положительном значении чистой приведенной стоимости или отклонен при отрицательном. Нулевое значение является точкой безразличия для инвестора.
  2. Если инвестор рассматривает несколько независимых проектов, принять следует те из них, у которых наблюдается положительный NPV.
  3. Если рассматривается ряд взаимоисключающих проектов, выбрать следует тот из них, у которого будет максимальная чистая приведенная стоимость.