Как рассчитать средний уровень ряда динамики пример. Показатели рядов динамики: их вычисление и прогнозирование. Метод аналитического выравнивания

16. Показатели динамического ряда, их вычисление и практическое применение.

Динамический ряд ― ряд однородных сопоставимых величин, показывающих изменение изучаемого явления во времени. Это статистическая форма отображения развития явлений во времени. Числа, составляющие динамический ряд, принято называть уровнями ряда. Уровни ряда могут быть представлены абсолютными числами, относительными и средними величинами .

Различают следующие виды динамических рядов.

Простой ― ряд, составленный из абсолютных величин, характеризующих

динамику одного явления.

Простые ряды являются исходными для построения производных рядов.

Производный ― ряд, состоящий из средних или относительных величин.

Интервальный ряд состоит из последовательного ряда чисел, характеризующих изменение явления на определенный период (по времени).

Моментный ряд состоит из величин, определяющих размеры явления не за какой-либо отрезок времени, а на определенную дату - момент.

Для более глубокого понимания сути развития общественных явлений исчисляют такие показатели динамического ряда, как абсолютный прирост, темп прироста, темп роста, абсолютное значение 1% прироста.

Абсолютным приростом называют разницу между каждым последующим уровнем и уровнем предыдущим. Абсолютный прирост может быть положительным и отрицательным.

Темпом роста называется отношение каждого последующего уровня к предыдущему, выраженному в процентах.

Темпом прироста называется отношение абсолютного прироста к предыдущему уровню, принятому за 100%.

Так как каждому относительному показателю соответствуют определенные абсолютные величины, то при изучении темпов прироста нужно обязательно учитывать, какая абсолютная величина соответствует каждому проценту прироста, каково его содержание. Для этого исчисляется такой показатель, как абсолютное значение одногопроцента прироста. Он определяется как частное от деления абсолютного прироста за определенный период на темп прироста в процентах за этот же период.

Для иллюстрации расчетов рассмотренных статистических показателей приведем ряд динамики.

Приведем пример. Необходимо дать анализ динамики рождаемости в определенном районе (таблица 5).

Т а б л и ц а 5 - Динамика рождаемости в регионе за 1996–2005гг .

Рождаемость, %

Абсолютный прирост

Темп прироста, %

Темп роста, %

Абсолютное значение 1% прироста

1. Определяем абсолютный прирост: 8,9 – 9,4 = – 0,5; 9,2 – 8,9 = 0,3 и т.д.

Вычисляем темп прироста: – 0,5×100/9,4 = – 5,3 и т.д.

3. Находим темп роста: 8,9×100/9,4 = 94,7 и т.д.

4. Получаем абсолютное значение 1% прироста: – 0,5/ – 5,3 = 0,09

Динамический ряд не всегда состоит из уровней, последовательно изменяющихся в сторону снижения или увеличения. Нередко уровни динамического ряда резко колеблются, и это не позволяет выявить основную тенденцию, свойственную изучаемому явлению за определённый период времени. В таких случаях проводится выравнивание динамического ряда. Существует несколько способов выравнивания динамического ряда: укрупнения интервала, сглаживание путем вычисления скользящей средней, аналитическое выравнивание по прямой и др.

Рассмотрим выравнивание по прямой линии, которое осуществляется следующим образом:

У t (теоретические уровни) = а o +а 1 t, где t - условное обозначение времени, а o и а 1 - параметры искомой прямой, которые находятся из решения системы уравнений:

na 0 + a 1 Σt = Σy;

a 0 Σt + a 1 Σt 2 = Σyt; где y - фактические уровни; n - число рядов динамики. Система уравнений упрощается, если t подобрать так, чтобы их сумма равнялась 0, т.е. начало отсчета времени перенести в середину рассматриваемого периода. Тогда:

a 0 = Σy/n; a 1 = Σyt/ Σt 2 .

Подставляя полученные значения a 0 и a 1 в формулу, вычисляют все значения теоретического уровня.

Рассмотрим следующий пример (таблица 6):

Т а б л и ц а 6: Выравнивание рождаемости за 2003–2008 г г.

Рождаемость, (у)

Условное

обозначение времени, t

Теоретический уровень после выравнивания

Трехлетние скользящие средние

n = 6 Σy = 53,6 Σyt = – 30,6 Σ tt=70.

Если ряд четный, отсчет ведется с 1 (середина ряда), затем последовательно нечетные числа 3, 5, 7 и т.д. в обе стороны (вверх с – ; вниз с +); если ряд нечетный, отсчет условного обозначения времени ведется с 0 (середина ряда), затем - 1, 2, 3 и т.д. в обе стороны.

Порядок вычисления следующий:

У t (теоретические уровни) = а o +а 1 t;

a 0 = Σy/n; a 1 = Σyt/ Σt 2 ;

a 0 = 8,9 a 1 = – 0,4;

8,9 + (– 0,4) × (– 5) = 11;

8,9 + (– 0,4) × (– 3) = 10,1; и т.д.

Порядок вычисления скользящей средней:

Для 2004 года (9,4 + 8,9 + 9,2) / 3 = 9,2.

Для 2005 года (8,9 + 9,2 + 8,3) / 3 = 8,8 и т.д.

Укрупнение интервала производят путём суммирования данных за ряд смежных периодов (таблица 7).

Т а б л и ц а 7

Рождаемость

За 2003–2005 рождаемость составляет 9,4+8,9+9,2=27,5.

За 2006–2008 рождаемость составляет 8,3+9,4+8,4=26,1.

17. Связи между явлениями (функциональная, корреляционная). Виды корреляционной связи по силе и направлению. Метод корреляции рядов (Пирсона), этапы вычисления коэффициента корреляции, оценка достоверности

Все явления в природе и обществе находятся во взаимной связи. По характеру зависимости явлений различают:

функциональную (полную);

корреляционную (неполную) связи.

Функциональная связь означает строгую зависимость явлений, когда любому значению одного из них всегда соответствует определенное одно и тоже значение другого.

При корреляционной же связи одной и той же величине одного признака соответствуют разные величины другого. Например: между ростом и весом имеется корреляционная связь, между заболеваемостью злокачественными новообразованиямии возрастом и т.д.

По направлению различают прямые и обратные корреляционные связи. При прямой ― увеличение одного из признаков ведет к увеличению другого; при обратном же ― с увеличением одного признака второй уменьшается.

По силе связь может быть сильной, средней и слабой. На основе статистического анализа можно установить наличие связи, ее направление и измерить ее силу.

Одним из способов измерения связи между явлениями является вычисление коэффициента корреляции, который обозначается r ху. Наиболее точным является метод квадратов (Пирсона), при котором коэффициент корреляции определяется по формуле:
, где

r ху ― коэффициент корреляции между статистическим рядом X и Y.

d х ― отклонение каждого из чисел статистического ряда X от своей средней арифметической.

d у ― отклонение каждого из чисел статистического ряда Y от своей средней арифметической.

В зависимости от силы связи и ее направления коэффициент корреляции может находиться в пределах от 0 до 1 (-1). Коэффициент корреляции, равный 0, говорит о полном отсутствии связи. Чем ближе уровень коэффициента корреляции к 1 или (-1), тем соответственно больше, теснее измеряемая им прямая или обратная связь. При коэффициенте корреляции равном 1 или (-1) связь полная, функциональная.

Схема оценки силы корреляционной связи по коэффициенту корреляции

Сила связи

Величина коэффициента корреляции при наличии

прямой связи (+)

обратной связи (-)

Связь отсутствует

Связь малая (слабая)

от 0 до +0,29

от 0 до –0,29

Связь средняя (умеренная)

от +0,3 до +0,69

от –0,3 до –0,69

Связь большая (сильная)

от +0,7 до +0,99

от –0,7 до –0,99

Связь полная

(функциональная)

Для вычисления коэффициента корреляции по методу квадратов составляется таблица из 7 колонок. Разберем процесс вычисления на примере:

ОПРЕДЕЛИТЬ СИЛУ И ХАРАКТЕР СВЯЗИ МЕЖДУ

Пора-

ность

зобом

(V y )

d x = V x M x

d y = V y M y

d x d y

d x 2

d y 2

Σ -1345 ,0

Σ 13996 ,0

Σ 313 , 47

1. Определяем среднее содержание йода в воде (в мг/л).

мг/л

2.Определяем среднюю пораженность зобом в %.

3. Определяем отклонение каждого V x от М x , т.е. d x .

201–138=63; 178–138=40 и т.д.

4. Аналогично определяем отклонение каждого V у от M у, т.е. d у.

0,2–3,8=-3,6; 0,6–38=-3,2 и т.д.

5. Определяем произведения отклонений. Полученное произведение суммируем и получаем.

6. d х возводим в квадрат и результаты суммируем, получаем.

7. Аналогично возводим в квадрат d у, результаты суммируем, получим

8. Наконец, все полученные суммы подставляем в формулу:

Для решения вопроса о достоверности коэффициента корреляции определяют его среднюю ошибку по формуле:

(Если число наблюдений менее 30, тогда в знаменателе n–1).

В нашем примере

Величина коэффициента корреляции считается достоверной, если не менее чем в 3 раза превышает свою среднюю ошибку.

В нашем примере

Таким образом, коэффициент корреляции не достоверен, что вызывает необходимость увеличения числа наблюдений.

Коэффициент корреляции можно определить несколько менее точным, но намного более легким способом ― методом рангов (Спирмена).

Оценка достоверности:

1. оценка достоверности интенсивного показателя:

m = √P x q / n(корень со всего)

где p - показатель, выраженный в %, ‰, %оо и т.д. q = (100 - р), при p выраженном в %; или (1000 - р), при p выраженном в ‰ или (10000 - р), при p выраженном в %оо и т.д.

t=1, достоверность 68,3%

2. Оценка достоверности разности 2 интенсивных показателей

М1 и м2 ошибки репрезентативности.

3. оценка достоверности среднеарифметической

Где σ - среднеквадратическое отклонение n - число наблюдений

T=M/m, если t больше 2 , ср. арифметическая достоверна.

4 .оценка достоверности разности 2 ср. арифметических

Для нахождения среднего значения моментного ряда с равностоящими уровнями используют среднюю хронологическую: .

Средняя хронологическая для разностоящих уровней моментного ряда :

Назначение сервиса . С помощью данного онлайн калькулятора можно рассчитать среднее значение моментного ряда по формулам средней хронологической.

Инструкция . Выберите количество данных и укажите, что задано: дни, месяцы или годы

Пример №1 . Численность населения города составила:

  • на 1 января – 80500 человек,
  • на 1 февраля – 80540 человек,
  • на 1 марта – 80550 человек,
  • на 1 апреля– 80560 человек,
  • на 1 июля – 80620 человек,
  • на 1 октября – 80680 человек,
  • на 1 января следующего года – 80690 человек.
Определите среднюю численность населения города в первом квартале, в первом полугодии и за год в целом.

Решение.
Представленные данные - моментный ряд. Находим средние по формуле средней хронологической.
Средняя хронологическая для разностоящих уровней моментного ряда:

y ср = (80500+80540)*1 + (80540+80550)*1 + (80550+80560)*1 + (80560+80620)*3 + (80620+80680)*3 + (80680+80690)*3/(2*12) = 1934790/(2*12) = 80616.25 ≈ 80616 человек
Средняя за I квартал:
человек
Средняя за II квартал:
человек
Средняя за III квартал:
человек
Средняя за первое полугодие:
человек

Пример №2 . По данным Таблицы 7 (Приложение 2) выбрать динамический ряд, соответствующий Вашему варианту, для которого:
1. Рассчитать:
а) среднегодовой уровень ряда динамики;
б) цепные и базисные показатели динамики: абсолютный прирост, темп роста, темп прироста;
в) средний абсолютный прирост, средний темп роста, средний темп прироста.

Методические указания
Для характеристики динамики рассчитывают систему показателей динамики.

Показатель динамики Формулы расчета
на цепной основе на базисной основе
Абсолютный прирост (+), сокращение (-) Δ ц =y i -y i-1 Δ б =y i -y 1
Коэффициент роста
Темп роста
Темп прироста
Абсолютное значение одного процента прироста A1%=0.01·y i-1 -
Для обобщающей характеристики динамики используются:
  • средние уровни ряда;
  • средние показатели изменения уровней ряда.
Средний уровень интервального ряда рассчитывается по формуле .
Для нахождения среднего уровня моментного ряда используют среднюю хронологическую: .
Средний абсолютный прирост рассчитывается в зависимости от исходных данных следующими способами:
или
Средний коэффициент роста (снижения):
или, .
Средний темп прироста (снижения):.

В следующем примере найдем средний размер фонда заработной платы (для интервального ряда).

Год Фонд заработной платы, тыс.руб.
1994 300
1995 349
1996 379
1997 450
1998 501
1999 581
2000 600
2001 648
2002 677
2003 748
2004 800

Средний уровень интервального ряда рассчитывается по формуле:


Средний размер ФЗП с 1994 по 2004 составил 548.45 тыс. руб.
Средний темп роста


В среднем за весь период с 1994 по 2004 рост ФЗП составил 1.1 (ежегодно увеличивался на 10%).
Средний темп прироста


Средний абсолютный прирост


В среднем за весь период фонд заработной платы увеличивался на 50 тыс. руб. с каждым годом.

В следующем примере найдем среднюю численность производственного персонала (для моментного ряда).
Цепные показатели ряда динамики .

Период численность ППП Абсолютный прирост Темп прироста, % Темпы роста, % Абсолютное содержание 1% прироста Темп наращения, %
1994 470 0 0 100 4.7 0
1995 500 30 6.38 106.38 4.7 6.38
1996 505 5 1 101 5 1.06
1997 533 28 5.54 105.54 5.05 5.96
1998 540 7 1.31 101.31 5.33 1.49
1999 589 49 9.07 109.07 5.4 10.43
2000 577 -12 -2.04 97.96 5.89 -2.55
2001 594 17 2.95 102.95 5.77 3.62
2002 640 46 7.74 107.74 5.94 9.79
2003 628 -12 -1.88 98.13 6.4 -2.55
2004 646 18 2.87 102.87 6.28 3.83

Для нахождения среднего уровня моментного ряда используют среднюю хронологическую:


Средняя численность промышленного персонала предприятия за анализируемый период составила 566.4 чел.

При анализе динамического ряда рассчитываются следующие показатели:

  • средний уровень динамического ряда;
  • абсолютные приросты: цепные и базисные, средний абсолютный прирост;
  • темпы роста: цепные и базисные, средний темп роста;
  • темпы прироста: цепные и базисные, средний темп прироста;
  • абсолютное значение одного процента прироста.

Цепные и базисные показатели вычисляются для характеристики изменения уровней динамического ряда и различаются между собой базами сравнения: цепные рассчитываются по отношению к предыдущему уровню ( переменная база сравнения), базисные - к уровню, принятому за базу сравнения (постоянная база сравнения).

Средние показатели представляют собой обобщенные характеристики ряда динамики. С их помощью сравнивают интенсивность развития явления по отношению к различным объектам, например по странам, отраслям, предприятиям и т.д., или периодам времени.

9.2.1. Средний уровень ряда динамики

Конкретное числовое значение статистического показателя, относящееся к моменту или периоду времени, называется уровнем ряда динамики и обозначается через y i (где i - показатель времени).

Методика расчета среднего уровня зависит от вида динамического ряда, а именно: является ли он моментным или интервальным, с равными или неравными временными промежутками между соседними датами.

Если дан интервальный ряд динамики абсолютных или средних величин с равными периодами времени, то для расчета среднего уровня применяется формула средней арифметической простой:

где y 1 , y 2 , y i , …, y n - уровни динамического ряда;

п - число уровней ряда.

Пример 9.2. По данным таблицы определим среднемесячный размер страхового возмещения, выплаченного страховой компанией, в расчете на один пострадавший объект за полугодие:

Если временные промежутки интервального динамического ряда неравны, то значение среднего уровня находят по формуле средней арифметической взвешенной, в которой в качестве весов используют длину временных периодов, соответствующих уровням ряда динамики (t i)

Пример 9.3. По данным, представленным в таблице, определим среднемесячный размер страхового возмещения, выплаченного страховой компанией, в расчете на один пострадавший объект:


В моментных рядах динамики с одинаковыми временными промежутками между датами средний уровень ряда рассчитывается по формуле средней хронологической простой

где y n - значения показателя на конец рассматриваемого периода.

Пример 9.4. По приведенным ниже данным о размере денежных средств на счете вкладчика на начало каждого месяца определим средний размер вклада в I квартале 2006 г.:

Средний уровень моментного ряда динамики равен:


Хотя I квартал включает три месяца (январь, февраль, март), в расчете должны быть использованы четыре уровня ряда (включая данные на 1 апреля). Это легко доказать. Действительно, если исчислять средние уровни по месяцам, то получим:

в январе

в феврале

Рассчитанные средние образуют интервальный ряд динамики с равными временными промежутками, в котором средний уровень исчисляется, как мы видели выше, по формуле средней арифметической простой:

Аналогично, если требуется рассчитать средний уровень моментного ряда динамики с равными интервалами между датами за первое полугодие, то в качестве последнего уровня в формуле средней хронологической простой следует взять данные на 1 июля, а если за год - данные на 1 января следующего года.

В моментных рядах динамики с неравными промежутками между датами для определения среднего уровня применяется формула средней хронологической взвешенной:

где t i - длина временного периода между двумя соседними датами.

Пример 9.5. По данным о запасах товаров на начало месяца определим средний размер товарных запасов в 2006 г.

Таблица 9.9.
Дата 01.01.06 01.02.06 01.03.06 01.07.06 01.09.06 01.12.06 01.01.07
Запасы товаров, тыс. руб. 1 320 1 472 1 518 1 300 1 100 1 005 920

Средний уровень ряда равен:

Расстояние между датами


Если имеется полная информация о значениях моментного статистического показателя на каждую дату, то среднее значение этого показателя за весь период исчисляется по формуле средней арифметической взвешенной:

где y i - значения показателя

t i - длина периода, в течение которого это значение статистического показателя оставалось неизменным.

Если мы дополним пример 9.4 информацией о датах изменения денежных средств на счете вкладчика в I квартале 2006 г., то получим:

  • остаток денежных средств на 1 января - 132 000 руб.;
  • января выдано - 19 711 руб.;
  • 28 января внесено - 35 000 руб.;
  • 20 февраля внесено - 2000 руб.;
  • 24 февраля внесено - 2581 руб.;
  • 3 марта выдано - 3370 руб. (в марте других изменений не происходило).

Итак, с 1 по 4 января (четыре дня) значение показателя оставалось равным 132 000 руб., с 5 по 27 января (23 дня) его значение составило 112 289 руб., с 28 января по 19 февраля (23 дня) - 147 289 руб., с 20 по 23 февраля (четыре дня) - 149 289 руб., с 24 февраля по 2 марта (семь дней) - 151 870 руб., с 3 по 31 марта (29 дней) - 148 500 руб. Для удобства проведения расчетов представим эти данные в таблице:

Таблица 9.10.
Длина периода, дней 4 23 23 4 7 29
Остаток денежных средств, руб. 132 00 112 289 147 289 149 289 151 879 148 500

По формуле средней арифметической взвешенной находим значение среднего уровня ряда

Как видим, среднее значение отличается от полученного в примере 9.4, оно является более точным, так как в вычислениях использовалась более точная информация. В примере 9.4 были известны лишь данные на начало каждого месяца, при этом не оговаривалось, когда же именно происходили изменения показателя, была применена формула хронологической средней.

В заключение отметим, что расчет среднего уровня ряда теряет свой аналитический смысл в случаях большой изменяемости показателя внутри ряда, а также при резкой смене направления развития явления.

9.2.2. Показатели абсолютного изменения уровней динамического ряда

Абсолютные приросты рассчитываются как разность между двумя значениями соседних уровней динамического ряда (цепные приросты) или как разность между значениями текущего уровня и уровня, принятого за базу сравнения (базисные приросты). Показатели абсолютного прироста имеют те же единицы измерения, что и уровни динамического ряда. Они показывают, на сколько единиц изменился показатель при переходе от одного момента или периода времени к другому.

Базисные абсолютные приросты рассчитывают по формуле

где у i - i-й текущий уровень ряда,

y 1 - первый уровень ряда динамики, принятый за базу сравнения.

Формула для определения цепных абсолютных приростов имеет вид

где у i - 1 - уровень, предшествующий i-му уровню динамического ряда.

Средний абсолютный прирост показывает, на сколько единиц в среднем ежемесячно, или ежеквартально, или ежегодно и т.д. изменялось значение показателя в течение рассматриваемого периода времени. В зависимости от того, какими данными мы располагаем, его можно рассчитать следующими способами:

Пример 9.6. По данным таблицы определим показатели абсолютных приростов размера страхового возмещения, выплаченного страховой компанией.

* Сумма всех рассчитанных цепных абсолютных приростов дает базисный абсолютный прирост последнего периода.

Среднемесячный абсолютный прирост за полугодие равен

Таким образом, в среднем ежемесячно размер выплат страхового возмещения увеличивался на 1,2 тыс. руб.

9.2.3. Показатели относительного изменения уровней динамического ряда

Характеристиками относительного изменения уровней ряда динамики являются коэффициенты и темпы роста значений показателя и темпы их прироста.

Коэффициент роста представляет собой соотношение двух уровней динамического ряда, выраженное в виде простого кратного отношения. Он показывает, во сколько раз изменилось значение показателя в одном периоде (моменте) времени по сравнению с другим. Темп роста - это коэффициент роста, выраженный в процентах. Он показывает, сколько процентов составляет значение показателя в данном периоде, если уровень, с которым проводится сравнение, принять за 100%.

Так же, как и абсолютные приросты, коэффициенты и темпы роста могут быть цепными и базисными.

Цепные коэффициент и темп роста измеряют относительное изменение текущего уровня показателя по сравнению с предшествующим ему уровнем:

коэффициент роста:

темп роста:

Базисные коэффициент и темп роста характеризуют относительное изменение текущего уровня показателя по сравнению с базисным (чаще всего с первым) уровнем:

коэффициент роста

темп роста

Цепные и базисные коэффициенты роста имеют между собой следующую связь:

Средние темп роста и коэффициент роста в динамических рядах с равноотстоящими уровнями рассчитываются по формуле средней геометрической простой

Цепные коэффициенты роста;

- цепные темпы роста.

Эти формулы могут быть приведены к следующему виду:

Для того чтобы определить, на сколько процентов текущий уровень показателя больше или меньше значения предшествующего или базисного уровня, рассчитываются темпы прироста. Они исчисляют путем вычитания 100% из соответствующих темпов роста:

Средний темп прироста рассчитывается аналогичным образом: из среднего темпа роста вычитаются 100%:

Пример 9.7. В таблице приведены рассчитанные коэффициенты роста, темпы роста и прироста показателя, характеризующего среднемесячный размер выплаченного компанией страхового возмещения за период с января по июнь.

Комплексный анализ динамических рядов, как правило, включает не только расчет характеристик интенсивности изменения уровней ряда при переходе от одного момента или промежутка времени к другому (абсолютных приростов, коэффициентов и темпов роста и прироста), а также нахождение обобщенных средних характеристик (среднего уровня ряда, средних темпов роста и прироста), но и выявление основных закономерностей в развитии динамического ряда. Определение тенденции развития, построение модели, описывающей изменение явления во времени, прогнозирование явления - все это важнейшие задачи при изучении динамических рядов экономических и социальных показателей.

На формирование уровней динамического ряда влияет множество различных факторов, которые по характеру воздействия можно объединить в три группы:

  1. действующие долговременно и определяющие основную тенденцию развития явления;
  2. действующие периодически - сезонные и циклические колебания;
  3. вызывающие случайные колебания уровней динамического ряда.

Соответственно, для анализа закономерности изменения уровней ряда динамики во времени применяют следующую модель:

где Т t - основная тенденция ряда ( тренд );

S t - циклические (в частности, сезонные) колебания;

е t - случайные колебания.

В аддитивной модели ряд динамики представлен как сумма перечисленных компонент , в мультипликативной модели - как их произведение []. В дальнейшем будем исходить из предположения мультипликативной формы связи между компонентами ряда динамики.

Тенденцией развития, или трендом, называется сформировавшееся направление развития явления во времени под воздействием постоянно действующих факторов. Судить о наличии тенденции в динамическом ряду на основе его визуального анализа можно лишь тогда, когда четко видно, что при переходе от одного момента времени к другому уровни ряда возрастают или убывают. Однако, как правило, нельзя сразу сказать, есть или нет тенденция в изменении уровней динамического ряда. Для этого применяются специальные методы.

К методам выявления основной тенденции развития динамического ряда (Т t) относятся:

  • метод укрупнения интервалов;
  • метод скользящей средней;
  • аналитическое выравнивание динамических рядов.

Рассмотрим их подробнее.

9.3.1. Метод укрупнения интервалов

Применение метода укрупнения интервалов рассмотрим на основе данных табл. 9.13.

Таблица 9.13. Поставки товаров в торговую сеть
Месяц Поставка товаров, млн руб.
Январь 80
Февраль 78
Март 75
Апрель 80
Май 82
Июнь 85
Июль 87
Август 82
Сентябрь 85
Октябрь 84
Ноябрь 86
Декабрь 88

Как видим, визуальный анализ данных не позволяет сделать какие-либо выводы о наличии тенденции в данном динамическом ряду: в отдельные месяцы, например, в феврале, марте, августе, октябре и декабре, поставки товаров снижались по сравнению с предыдущими месяцами, в остальные периоды - возрастали.

Применим к исходным данным метод укрупнения интервалов, образовав новый динамический ряд с более крупными временными периодами - кварталами, и рассчитаем средний месячный объем поставок в каждом квартале (табл. 9.14).

Итак, по новым, более крупным интервалам уже четко видно, что значения исследуемого признака во временном аспекте имеют тенденцию к возрастанию.

Применение рассмотренного метода в основном ограничивается теми ситуациями, когда исходные данные относятся к дням, неделям или месяцам года, так как значения исследуемого признака по более мелким временным интервалам больше подвержены случайным колебаниям. Если временные промежутки представляют собой годы, то укрупнение интервалов становится малоэффективным.

9.3.2. Метод скользящей средней

Следующий способ выявления тенденции в динамическом ряду основан на расчете и анализе так называемых скользящих (подвижных) средних.

Скользящими (подвижными) средними называются средние арифметические значения показателя, исчисленные по новым m-членным укрупненным интервалам. Правила построения этих интервалов следующие. Первый из интервалов включает первые m уровней ряда динамики, второй интервал образуется путем исключения первого члена укрупненного интервала и замены его последующим элементом ряда динамики, имеющим номер (m + 1) и т.д. - до включения в интервал последнего уровня ряда. По вычисленным подобным путем подвижным средним делают вывод о существовании тенденции в динамическом ряду.

Если в качестве укрупненного интервала используют период в три месяца, то первая подвижная трехчленная средняя вычисляется как средняя арифметическая из данных за январь, февраль и март, вторая - как средняя арифметическая из данных за февраль, март, апрель и т.д. Значения подвижных средних относят к конкретному временному периоду, соответствующему середине укрупненного интервала.

Проведем сглаживание ряда методом скользящей средней по трем членам (табл. 9.15).

В нашем примере первая скользящая средняя относится к февралю, вторая - к марту и т. д.

В тех случаях, когда сглаживание проводится по четному числу уровней ряда динамики, середина временного интервала сглаживания будет находиться между двумя моментами (периодами) времени. Например, если проводить сглаживание по четырем членам, середина первого интервала будет находиться между февралем и мартом, второго интервала - между мартом и апрелем и т.д. В таких случаях возникает необходимость центрирования полученных результатов для отнесения сглаженных значений показателя к конкретным периодам или моментам времени. Расчет центрированных скользящих средних может проводиться в два этапа:

  1. определение скользящих сумм и нецентрированных скользящих средних по четному числу уровней ряда динамики;
  2. исчисление центрированных скользящих средних из двух смежных ранее исчисленных нецентрированных скользящих средних и отнесение их к соответствующим периодам или моментам времени.

Методика расчета центрированных скользящих средних показана ниже (табл. 9.16).

9.3.3. Аналитическое сглаживание (выравнивание) рядов динамики

Аналитическое выравнивание динамических рядов - это нахождение определенной модели (уравнения тренда), которая математически описывает тенденцию развития явления во времени. При этом уровни показателя рассматриваются только как функция от времени. В отличие от рассмотренных выше методов, таких, как укрупнение интервалов, скользящих средних, направленных в основном на то, чтобы ответить на вопрос: есть ли тенденция в динамическом ряду или нет, и определить ее направление, аналитическое выравнивание позволяет более точно установить характер развития явления, а главное - описать его математически, уловить все нюансы и направления развития и, что, пожалуй, наиболее интересно, использовать в дальнейшем полученную модель для прогнозирования.

Первым шагом в проведении аналитического выравнивания является выбор вида математической функции, которую предполагается использовать в качестве модели тренда. При этом можно руководствоваться формой кривой, полученной на основе отображения на графике эмпирических данных. Схема построения графика достаточно проста: по оси абсцисс откладываются временные периоды (даты), по оси ординат - значения уровней динамического ряда.

При анализе рядов динамики в качестве линии тренда чаще всего используются следующие функции:

Кроме того, возможности современного программного обеспечения (например, система STATISTICA) позволяют использовать в качестве модели тренда математическую функцию любого (задаваемого пользователем) произвольного вида.

Выравнивание по линейной функции (прямой). Выбор в пользу выравнивания по линейной функции производят либо по результатам графического анализа эмпирических данных, либо если уровни ряда меняются в арифметической прогрессии (в этом случае рассчитанные цепные абсолютные приросты уровней приблизительно одинаковы).

При выравнивании по линейной функции (прямой) используется уравнение вида

y t = a 0 + a 1 t,

где t - условный показатель времени.

Параметры уравнения определяются на основе метода наименьших квадратов путем решения системы нормальных линейных уравнений

В качестве примера рассмотрим динамический ряд, представленный в табл. 9.17.

Таблица 9.17. Доход банков от операций с ценными бумагами за 2001-2006 гг.
Год 2001 2002 2003 2004 2005 2006
Доход банков от операций с ценными бумагами, млн руб. 70 92 112 135 159 185
Цепные абсолютные приросты - 22 20 23 24 26

Итак, рассчитанные нами цепные абсолютные приросты относительно постоянны, поэтому можно говорить о целесообразности выбора в качестве аналитической функции уравнения прямой.

При нахождении параметров уравнения показатель времени удобно обозначить так, чтобы выполнялось следующее равенство: . Для этого при нечетном количестве уровней ряда моменту (периоду) времени, находящемуся в центре ряда, придается значение t = 0, предыдущим - присваивают значения -1, -2, -3 и т.д. , а последующим - значения 1, 2, 3 и т.д. (т.е. с шагом 1 от середины ряда в одну и другую сторону от центра).

Предположим, что мы рассматриваем динамический ряд, имеющий пять уровней (за период с 2002 по 2006 г.), тогда условный показатель времени обозначим так, как это показано в табл. 9.18.

При четном количестве уровней в середине ряда находятся два момента (периода) времени. Одному из них присваивают значение t = -1, а другому t = +1. Тогда предыдущие моменты времени получают значения -3, -5 и т.д., а последующие значения - +3, +5 и т.д. (т.е. с шагом 2 в одну и другую сторону от центра).

При подобном способе обозначения времени система уравнений упрощается

Тогда коэффициенты уравнения а 0 и а 1 находят следующим образом:

Определим по данным табл. 9.17, в которой представлен ряд динамики с четным числом уровней, параметры уравнения прямой (табл. 9.19).

Таблица 9.19. Расчетная таблица для определения параметров уравнения прямой
Год Доход банков от операций с ценными бумагами, млн руб., y t t 2 yt Выравненные значения, y t
2001 70 -5 25 -350 68,43
2002 92 -3 9 -276 91,258
2003 112 -1 1 -112 114,086
2004 135 1 1 135 136,914
2005 159 3 9 477 159,742
2006 185 5 25 925 182,57
Сумма 753 0 70 799 753

Искомое уравнение прямой имеет вид: y t = 125,5 + 11,414t.

Подставляя в полученное уравнение соответствующее значение t, рассчитаем выравненные теоретические значения показателя (см. последнюю графу табл. 9.11). При этом сумма выравненных значений должна равняться сумме эмпирических значений (753), если это не так, то параметры уравнения определены неверно.

График, построенный по выравненным значениям показателя, будет отражать тенденцию развития явления во времени (рис. 9.1).


Рис. 9.1.

На основе полученного уравнения тренда можно строить прогнозные значения показателя для разных периодов времени путем подстановки в полученное уравнение значений временной компоненты. Например, для 2007 г. получим следующую ожидаемую величину дохода:

y i = 125,5 + 11,414t = 125,5 + 11,414 * 7 = 205,398 (млн руб.).

Выравнивание по параболе второго порядка. При ускоренном или замедленном изменении уровней динамического ряда, когда постоянны рассчитанные вторые разности уровней (цепные абсолютные приросты цепных абсолютных приростов), для аналитического выравнивания применяют параболу второго порядка:

y i = a 0 + a 1 t + a 2 t 2 .

Параметры уравнения находят на основе метода наименьших квадратов, при этом обозначение условного показателя времени t абсолютно аналогично обозначению времени при построении прямой.

Система нормальных уравнений для нахождения параметров уравнения параболы имеет вид:

Если принять обозначение времени, при котором выполняется равенство , рассматриваемую систему уравнений можно упростить. Она примет следующий вид:

Проведем аналитическое выравнивание данных, характеризующих динамику инвестиций за период 2001-2006 гг. (табл. 9.20).

Таблица 9.20. Динамика инвестиций за 2001-2006 гг.
Показатель Год
2001 2002 2003 2004 2005 2006
Инвестиции, млн руб., y i 98 100 130 193 280 391
Первые разности (цепные абсолютные приросты) - 2 30 63 87 111
Вторые разности - - 28 33 24 24

Рассчитанные вторые разности демонстрируют относительное постоянство, поэтому в качестве аналитической функции для выравнивания возьмем уравнение параболы второго порядка. Наш выбор подтверждает и графический анализ данных (рис. 9.2).


Рис. 9.2.

Проведем необходимые расчеты для определения параметров уравнения в табл. 9.21.

Таблица 9.21. Расчетная таблица для определения параметровуравнения параболы второго порядка
Год Вложение в уставные капиталы, млн руб., y t 2 t 4 y-t y-t 2 Выравненные значения, y i
1999 98 -5 25 625 -490 2 450 97
2000 100 -3 9 81 -300 900 101
2001 130 -1 1 1 -130 130 132
2002 193 1 1 1 193 193 191
2003 280 3 9 81 840 2 520 278
2004 391 5 25 625 1 955 9 775 392
Сумма 1 192 0 70 1 414 2 068 15 968 1 192

Построим и решим систему уравнений (табл. 9.15):

Таким образом, искомое уравнение параболы имеет вид

y i =158,406 + 29,543t + 3,451t 2 .

Выравнивание по показательной функции. Если уровни ряда меняются в геометрической прогрессии, т.д. рассчитанные цепные коэффициенты роста относительно постоянны, то для выравнивания используют показательную функцию вида

Параметры показательного уравнения определяются путем решения следующей системы нормальных уравнений:

Если принять обозначении времени t, при котором выполняется условие , система гораздо упрощается:

Проведем аналитическое выравнивание данных, характеризующих изменение числа страховых компаний региона за период 2000-2006 гг. (табл. 9.22).

Таблица 9.22. Динамика числа страховых компаний региона за 2000-2006 гг.
Год 2000 2001 2002 2003 2004 2005 2006
Число страховых компаний, y i 215 220 223 229 235 241 248
Цепные коэффициенты роста - 1,023 1,014 1,027 1,026 1,026 1,029

Относительно постоянные цепные коэффициенты роста позволяют в качестве аналитического выражения тренда выбрать показательную функцию.

Проведем необходимые расчеты для определения параметров выбранного уравнения в табл. 9.23.

Таблица 9.23. Расчетная таблица для определения параметров показательной функции
Год Число страховых компаний, y Условное обозначение времени, t t 2 lgy t – lgy Выравненные значения, y t
2000 215 -3 9 2,332438 -6,99732 210
2001 220 -2 4 2,342423 -4,68485 217
2002 223 -1 1 2,348305 -2,3483 223
2003 229 0 0 2,359835 0 230
2004 241 1 1 2,371068 2,371068 237
2005 241 2 4 2,382017 4,764034 244
2006 248 3 9 2,394452 7,183355 251
Сумма 1 611 0 28 16,53054 0,287991 1 611

Составим и решим систему нормальных уравнений:. Поэтому моменты (периоды) времени просто нумеруются, т.д. условному показателю времени присваиваются значения (1, 2, 3 и т.д.) начиная с первого уровня ряда.2

0,50000 4 0,25000 26,000 50 Март 48 3 0,33333 9 0,11111 16,000 47 Апрель 45 4 0,25000 16 0,06250 11,250 45 Май 44 5 0,20000 25 0,04000 8,800 44 Июнь 43 6 0,16667 36 0,02778 7,167 43 Июль 43 7 0,14286 49 0,02041 6,143 43 Август 42 8 0,12500 64 0,01563 5,250 43 Сентябрь 42 9 0,11111 81 0,01235 4,667 42 Октябрь 42 10 0,10000 100 0,01000 4,200 42

Подставив в полученное уравнение значения условного показателя времени t, рассчитаем выравненные значения y i и поместим их в расчетную таблицу. Как видим, выравненные значения достаточно близки к эмпирическим данным, что позволяет надеяться на получение достоверных прогнозов на основе построенной модели.

При проведении аналитического выравнивания зачастую бывает трудно заранее определить подходящий вид уравнения тренда, особенно если эмпирические данные графически явно не демонстрируют относимость к какой-либо аналитической функции. Тогда поступают следующим образом: строят несколько уравнений тренда. Затем для каждого из них вычисляют остаточную дисперсию и модель с наименьшей величиной остаточной дисперсии признают лучшей из имеющихся на данный момент.

Остаточная дисперсия исчисляется по формуле

Это более простой метод, но есть и другие, более сложные методы.

Хронологический ряд (ряд динамики, динамический ряд) - это ряд статистических показателей, последовательное изменение которых отражает развитие общественных явлений во времени. Ряд динамики содержит два элемента: показателя времени, к которому относятся статистически показатели; уровень ряда у.

По времени, отражаемому в рядах динамики, различают моментные и интервальные хронологические ряды.

В моментном ряду динамики статистические показатели характеризуют состояние явления на определенный момент времени. Для моментного ряда динамики характерно то, что каждый последующий, поэтому сумма показателей такого ряда не имеет экономического смысла.

Интервальный ряд динамики состоит из показателей, характеризующих размеры явления за определенный промежуток времени. Показатели такого, ряда можно суммировать, в результате получить новый ряд динамики, каждый показатель которого характеризует размер явления за более длительный период времени.

По способу выражения рядов динамики могут быть рядами абсолютных, относительных и средних величин.

Для характеристики интенсивности изменения общественных явлений во времени рассчитывают следующие показатели: абсолютные приросты, темпы роста, темпы прироста, абсолютное значение 1 % прироста, коэффициент опережения.

В зависимости от базы сравнения они могут быть базисными (за базу сравнения берется один, постоянный уровень) и цепными (за базу сравнения берется предыдущий уровень).

Абсолютным приростом у называется разность уровней ряда, которая выражается в единицах измерения показателей ряда динамики:

у базисный = уi - yo ;

y цепной = yi - yi-1 ,

где уi - уровни ряда динамики;

уо - базисный уровень;

уш-1 - предыдущий уровень.

Темпы роста Тр - отношение одного уровня к другому, принятому за базу сравнения, выражаются в коэффициентных или процентах:

Тр базисный = ;

Тр цепной = .

Темп прироста Тпр - отношение абсолютного прироста к уровню, принятому за базу сравнения, выражается в коэффициентах или процентах:


Т пр базисный = ;

Т пр цепной =

Абсолютное значение 1 % прироста А показывает, какая абсолютная величина содержится в 1 %, и определяется как отношение цепного абсолютного прироста к цепному темпу прироста, выраженному в процентах:

Т.е. абсолютное значение 1 % прироста можно также определить как 0,01 предыдущего уровня.

Для обобщающей характеристики динамики общественных явлений определяют средний уровень ряда динамики, средний абсолютный прирост, средний темп роста и средний темп прироста.

Средний уровень ряда динамики называется средней хронологической, которая дает обобщающую характеристику развития явлений во времени.

В интервальном ряду динамики средний уровень у определяется по формуле:

где n - число уровней ряда;

у - уровни.

В моментном ряду динамики:

1) с равными промежутками между моментами времени средний уровень определяется по формуле:

где n - число уровней;

2) с неравными промежутками между моментами времени средний уровень определяется по формуле:

где ti - величина интервалов между моментами времени.

Средний абсолютный прирост определяется по отдельным значениям цепных абсолютных приростов:

Средний темп роста определяется по формуле средней геометрической:

где Тi - темпы роста;

m - число темпов роста.

Если известны уровни ряда динамики, то средний темп роста можно определить как

где уо, уn - уровень первого и последнего периода (момента) времени в ряду динамики.

Средний темп прироста определяют на основании среднего темпа роста:

Тпр = Тр - 1 (100 %).

Одной из задач, решаемых при анализе динамики, является установление закономерности (тенденции) развития явления во времени.

Для этого используются методы укрупнения интервалов, скользящей средней и аналитического выравнивания.

Метод укрупнения интервалов состоит в том, что первоначальный ряд динамики преобразуется и заменяется другим, в котором показатели относятся к большим по продолжительности периодам времени. Этот метод используется только для интервальных рядов динамики.

Метод скользящей средней заключается в том, что формируются укрупненные интервалы, состоящие из одинакового числа уровней. При этом каждый последующий интервал получаем, постепенно сдвигаясь от начального интервала ряда динамики на один интервал; по укрупненным интервалам определяются средние из уровней, входящих в каждый интервал.При использовании метода аналитического выравнивания для выявления тенденции развития явления во времени фактические уровни заменяются теоретическими, исчисленными на основе уравнения кривой или прямой, отражающей общую тенденцию.

Если ряд выравнивается по уравнению прямой, то общая тенденция выразится уравнением:

где а и b - параметры уравнения;

yt - теоретические уровни ряда динамики;

t - периоды или моменты времени.

Для исчисления yt при известных t, необходимо первоначально определить параметры уравнения. Для этого используется способ наименьших квадратов, который дает систему линейных уравнений:

где у - фактические уровни ряда динамики;

n - число этих уровней.

Эту систему уравнений можно упростить, если пронумеровать периоды времени t таким образом, чтобы их сумма балы равна 0 (t = 0). Для этого в ряду динамики с четным числом уровней нумерацию необходимо начинать с середины ряда с чисел -1, +1; в ряду динамики с нечетным числом уровней нумерацию необходимо начинать с середины ряда с 0, тогда